Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A. Subbiahpandi,^a D. Velmurugan,^b* K. Ravikumar,^c E. Ramesh^d and R. Raghunathan^d

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, ^bDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^cLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^dDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.051 wR factor = 0.142 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

organic papers

3-Benzylidene-3',7'-diphenylcyclohexanespiro-6'-(perhydro-2-thiapyrrolizidine)-5'-spiro-3''-1*H*-indole-2,2''-dione

In the title compound, $C_{37}H_{32}N_2O_2S$, the two rings of the thiapyrrolizidine residues each adopt an envelope conformation, whereas the cyclohexanone ring adopts a chair conformation. N-H···O hydrogen bonds connect the molecules into centrosymmetric dimers.

Received 31 March 2006 Accepted 28 April 2006

Comment

The spiro-indolepyrrolidine ring system is encountered in many pharmacologically important alkaloids, *e.g.* vincrinstine, vinblastine and spiro-typostatins (Cordel, 1981; Bindra, 1973). Substituted pyrrolidine compounds have been found to have antimicrobial and antifungal activity against various pathogens (Amalraj *et al.*, 2003). Oxindole derivatives are found to be potent aldose reductase inhibitors (ARIs), which help to treat and prevent diabetic complications arising from elevated levels of sorbitol (Rajeswaran *et al.*, 1999). In view of this medicinal importance, and as a continuation of our studies, an X-ray crystallographic analysis of the title compound, (I), has been carried out and the results are presented here.

Fig. 1 shows a displacement ellipsoid plot of (I), with the atom-numbering scheme. Selected geometric parameters are given in Table 1. Compound (I) consists of a thiapyrrolizidine system (rings A and B) connected to an oxindole group (rings C and D) at C2, a benzylidene-cyclohexanone residue (rings E and F) at C3, and two phenyl rings (G and H) at C4 and C8.

The pyrrolidine ring (A) adopts an envelope conformation, with puckering parameters $q_2 = 0.381$ (2) Å and $\varphi = -75.8$ (2)° (Cremer & Pople, 1975); the displacement asymmetry parameter (Nardelli, 1983) is $\Delta_{\rm S}$ (C4) = 0.016 (1). Ring B adopts an envelope conformation, with puckering parameters $q_2 = 0.469$ (2) Å and $\varphi = -74.2$ (2)° and a lowest displacement

asymmetry parameter $\Delta_{s}(S7) = 0.012$ (1). The cyclohexanone ring (*F*) adopts a chair conformation.

The crystal structure of (I) is stabilized by intermolecular $N-H\cdots O$ hydrogen bonds, forming centrosymmetric dimers denoted as $R_2^2(8)$ (Bernstein *et al.*, 1995).

Experimental

A mixture of 2,6-bis-acylidine-cyclohaxanone, 2-phenylthiazolidine-4-carboxylic acid and benzaldehyde (1:1:1 mole ratio) in dimethylformamide-toluene (3:1) was refluxed until the disappearance of the starting material, as evidenced by thin-layer chromatography. After completion of the reaction, the solvent was evaporated under vacuum. The resulting crude product was purified by column chromatography (silica gel; hexane-ethyl acetate 9:1). The compound was recrystallized from methanol to yield crystals of (I) (m.p. 507 K).

Z = 4

 $D_x = 1.301 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, colourless

 $0.35 \times 0.24 \times 0.16 \ \text{mm}$

6460 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0816P)^2 + 0.4571P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.38 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

4985 reflections with $I > 2\sigma(I)$

 $\mu = 0.15 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.022$

 $\theta_{\rm max} = 28.0^\circ$

Crystal data

 $\begin{array}{l} C_{37}H_{32}N_2O_2S\\ M_r=568.71\\ Monoclinic, P2_1/c\\ a=10.0312\ (6)\ \text{\AA}\\ b=20.8599\ (13)\ \text{\AA}\\ c=14.1305\ (8)\ \text{\AA}\\ \beta=100.973\ (1)^\circ\\ V=2902.7\ (3)\ \text{\AA}^3 \end{array}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: None 17503 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.142$ S = 1.026460 reflections 379 parameters H-atom parameters constrained

Table 1

Selected torsion angles (°).

C17-C18-C22-C23	-177.4(2)	C18-C22-C23-C24	134.5 (2)
C19-C18-C22-C23	-2.0(3)	C3-C4-C29-C34	-93.9 (2)
C18-C22-C23-C28	-45.9 (3)	S7-C8-C35-C36	44.4 (2)

Ta	ble	2
----	-----	---

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C4-H4···O2	0.98	2.41	2.804 (2)	103
C20−H20B····O1	0.97	2.50	3.134 (2)	122
$C21 - H21B \cdots O1$	0.97	2.44	2.975 (2)	114
C40-H40···O1	0.93	2.50	3.384 (2)	159
$N10-H10\cdots O1^{i}$	0.86	2.04	2.851 (2)	157
$C25-H25\cdots O1^{ii}$	0.93	2.51	3.236 (3)	135

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y, z.

Figure 1

A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

All H atoms were positioned geometrically and treated as riding on their parent C atoms, with N-H = 0.86 Å and C-H ranging from 0.93 to 0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ZORTEP* (Zsolnai, 1997); software used to prepare material for publication: *SHELXL97* and *PARST* (Nardelli, 1995).

DV thanks the Department of Biotechnology (DBT) and the University Grants Commission (UGC) for providing support under Major Research Projects.

References

- Amalraj, A., Raghunathan, R., Sridevi kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bindra, J. S. (1973). Oxindole Alkaloids, Alkaloid Chemistry and Physiology, edited by R. H. F. Manke, Vol. 14, pp. 83–121. New York: Academic Press.
- Bruker (2001). *SAINT* (Version 6.28a) and *SMART* (Version 5.625) Bruker AXS Inc., Madison, Wisconsin, USA.
- Cordel, G. (1981). Introduction to Alkaloids, A Biogenetic Approach, p. 1055. New York: Wiley International.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Rajeswaran, W. G., Labroo, R. R. & Cohen, L. A. (1999). J. Org. Chem. 64, 1369–1371.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.